Automatic decomposition of complex thin walled CAD models for hexahedral dominant meshing

نویسندگان

  • Liang Sun
  • Christopher M Tierney
  • Cecil G Armstrong
  • Trevor T Robinson
چکیده

This paper describes an automatic method for identifying thin-sheet regions (regions with large lateral dimensions relative to the thickness) for complex thin walled components, with a view to using this information to guide the hex meshing process. This fully automated method has been implemented in a commercial CAD system (Siemens NX) and is based on the interrogation and manipulation of face pairs, which are sets of opposing faces bounding thin-sheet regions. Careful consideration is given to the mapping, merging and intersection of face pairs to generate topologies suitable for sweep meshing thin-sheet regions, and for treating the junctions between adjacent thin-sheet regions. The quality of the resulting hexahedral mesh is considered when making decisions on the generation and positioning of the cutting surfaces required to isolate thin-sheet regions. The resulting decomposition delivers a substantial step towards automatic hexahedral meshing for complex thin-walled geometries. It is proposed that hexahedral meshes be applied to the identified thin-sheet regions by quad meshing one of the faces bounding the thin-sheet region and sweeping it through the thickness to create hexahedral elements. © 2016 The Authors. Published by Elsevier Ltd. Peer-review under responsibility of the organizing committee of IMR 25.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Automatic swept volume decomposition based on sweep directions extraction for hexahedral meshing

Automatic and high quality hexahedral meshing of complex solid models is still a challenging task. To guarantee the quality of the generated mesh, current commercial software normally requires users to manually decompose a complex solid model into a set of simple geometry like swept volume whose high quality hexahedral mesh can be easily generated. The manual decomposition is a time-consuming p...

متن کامل

Volume Decomposition and Feature Recognition for Hexahedral Mesh Generation

Considerable progress has been made on automatic hexahedral mesh generation in recent years. Several automatic meshing algorithms have proven to be very reliable on certain classes of geometry. While it is always worth pursuing general algorithms viable on more general geometry, a combination of the well-established algorithms is ready to take on classes of complicated geometry. By partitioning...

متن کامل

Hexahedral Meshing of complex and invalid CAD Geometries

The primary requirement for a mesh generator used in an automated tool is robustness. Surface based meshing algorithms fail very often especially with invalid boundary representation geometries. With generic boundary representation formats like STEP or IGES, invalid geometries are very common due to the loss of information and precision in CAD Data Exchange. This paper presents an approach to a...

متن کامل

Meshing Complexity of Single Part CAD Models

This paper proposes a method for predicting the complexity of meshing Computer Aided Design (CAD) geometries with unstructured, hexahedral, finite elements. Meshing complexity refers to the relative level of effort required to generate a valid finite element mesh on a given CAD geometry. A function is proposed to approximate the meshing complexity for single part CAD models. The function is dep...

متن کامل

An Imprinting Algorithm to Insert Geometric Details into Hexahedral Meshes

In numerous computational engineering applications, hexahedral meshes may be preferred over tetrahedral meshes. However, automatic hexahedral meshing remains an unsolved issue and thus generating a hexahedral mesh is known as a time-consuming stage that requires a lot of user interactions in the simulation process. A possible way for designing and optimizing a CAD model or a geometric shape req...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016